skip to main content


Search for: All records

Creators/Authors contains: "Manwadkar, Viraj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We examine the spatial distribution and orbital pole correlations of satellites in a suite of zoom-in high-resolution dissipationless simulations of Milky Way (MW)-sized haloes. We use the measured distribution to estimate the incidence of satellite configurations as flattened and as correlated in their orbital pole distribution as the satellite system of the MW. We confirm that this incidence is sensitive to the radial distribution of subhaloes and thereby to the processes that affect it, such as artificial disruption due to numerical effects and disruption due to the central disc. Controlling for the resolution effects and bracketing the effects of the disc, we find that the MW satellite system is somewhat unusual (at the ≈2–3σ level) but is statistically consistent with the Lambda cold dark matter model, in general agreement with results and conclusions of other recent studies.

     
    more » « less
  2. ABSTRACT

    We use GRUMPY, a simple regulator-type model for dwarf galaxy formation and evolution, to forward model the dwarf galaxy satellite population of the Milky Way (MW) using the Caterpillar zoom-in simulation suite. We show that luminosity and distance distributions of the model satellites are consistent with the distributions measured in the DES, PS1, and SDSS surveys, even without including a model for the orphan galaxies. We also show that our model for dwarf galaxy sizes can simultaneously reproduce the observed distribution of stellar half-mass radii, r1/2, of the MW satellites and the overall r1/2–M⋆ relation exhibited by observed dwarf galaxies. The model predicts that some of the observed faint stellar systems with r1/2 < 10 pc are ultra-faint dwarf galaxies. Scaling of the stellar mass M⋆ and peak halo mass Mpeak for the model satellites is not described by a power law, but has a clear flattening of M⋆–Mpeak scaling at $M_{\rm peak}\lt 10^8\, \, M_{\odot }$ imprinted by reionization. As a result, the fraction of low mass haloes ($M_{\rm peak}\lt 10^8 \, M_{\odot }$) hosting galaxies with MV < 0 is predicted to be 50 per cent at $M_{\rm peak}\sim 3.6 \times 10^7\, \, M_{\odot }$. We find that such high fraction at that halo mass helps to reproduce the number of dwarf galaxies discovered recently in the HSC-SSP survey. Using the model we forecast that there should be the total of $440^{+201}_{-147}$ (68 per cent confidence interval) MW satellites with MV < 0 and r1/2 > 10 pc within 300 kpc and make specific predictions for the HSC-SSP, DELVE-WIDE, and LSST surveys.

     
    more » « less
  3. ABSTRACT

    We present a simple regulator-type framework designed specifically for modelling formation of dwarf galaxies. Despite its simplicity, when coupled with realistic mass accretion histories of haloes from simulations and reasonable choices for model parameter values, the framework can reproduce a remarkably broad range of observed properties of dwarf galaxies over seven orders of magnitude in stellar mass. In particular, we show that the model can simultaneously match observational constraints on the stellar mass–halo mass relation, as well as observed relations between stellar mass and gas phase and stellar metallicities, gas mass, size, and star formation rate, as well as general form and diversity of star formation histories of observed dwarf galaxies. The model can thus be used to predict photometric properties of dwarf galaxies hosted by dark matter haloes in N-body simulations, such as colours, surface brightnesses, and mass-to-light ratios and to forward model observations of dwarf galaxies. We present examples of such modelling and show that colours and surface brightness distributions of model galaxies are in good agreement with observed distributions for dwarfs in recent observational surveys. We also show that in contrast with the common assumption, the absolute magnitude–halo mass relation is generally predicted to have a non-power law form in the dwarf regime, and that the fraction of haloes that host detectable ultra-faint galaxies is sensitive to reionization redshift (zrei) and is predicted to be consistent with observations for zrei ≲ 9.

     
    more » « less
  4. ABSTRACT

    We use the Auriga simulations to probe different satellite quenching mechanisms operating at different mass scales ($10^5 \, \mathrm{M}_\odot \lesssim M_\star \lesssim 10^{11} \, \mathrm{M}_\odot$) in Milky Way-like hosts. Our goal is to understand the origin of the satellite colour distribution and star-forming properties in both observations and simulations. We find that the satellite populations in the Auriga simulations, which was originally designed to model Milky Way-like host galaxies, resemble the populations in the Exploration of Local VolumE Satellites (ELVES) Survey and the Satellites Around Galactic Analogs (SAGA) survey in their luminosity function in the luminosity range −12 ≲ MV ≲ −15 and resemble ELVES in their quenched fraction and colour–magnitude distribution in the luminosity range −12 ≲ Mg ≲ −15. We find that satellites transition from blue colours to red colours at the luminosity range −15 ≲ Mg ≲ −12 in both the simulations and observations and we show that this shift is driven by environmental effects in the simulations. We demonstrate also that the colour distribution in both simulations and observations can be decomposed into two statistically distinct populations based on their morphological type or star-forming status that are statistically distinct. In the simulations, these two populations also have statistically distinct infall time distributions. The comparison presented here seems to indicate that this tension is resolved by the improved target selection of ELVES, but there are still tensions in understanding the colours of faint galaxies, of which ELVES appears to have a significant population of faint blue satellites not recovered in Auriga.

     
    more » « less